Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 24(1): 56, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273247

RESUMO

AIMS: Thymus plant is a very useful herbal medicine with various properties such as anti-inflammatory and antibacterial. Therefore, the properties of this plant have made this drug a suitable candidate for wound healing. In this study, hydroxypropyl methylcellulose (HPMC) gel containing Zataria multiflora volatile oil nanoemulsion (neZM) along with polycaprolactone/chitosan (PCL-CS) nanofibrous scaffold was used, and the effect of three experimental groups on the wound healing process was evaluated. The first group, HPMC gel containing neZM, the second group, PCL-CS nanofibers, and the third group, HPMC gel containing neZM and bandaged with PCL-CS nanofibers (PCL-CS/neZM). Wounds bandaged with common sterile gas were considered as control. METHODS: The nanoemulsion was synthesized by a spontaneous method and loaded into a hydroxypropyl methylcellulose (HPMC) gel. The DLS test investigated the size of these nanoemulsions. A PCL-CS nanofibrous scaffold was also synthesized by electrospinning method then SEM and contact angle tests investigated morphology and hydrophilicity/hydrophobicity of its surface. The animal study was performed on full-thickness skin wounds in rats, and the process of tissue regeneration in the experimental and control groups was evaluated by H&E and Masson's trichrome staining. RESULTS: The results showed that the nanoemulsion has a size of 225±9 nm and has an acceptable dispersion. The PCL-CS nanofibers synthesized by the electrospinning method also show non-beaded smooth fibers and due to the presence of chitosan with hydrophilic properties, have higher surface hydrophobicity than PCL fibers. The wound healing results show that the PCL-CS/neZM group significantly reduced the wound size compared to the other groups on the 7th, 14th, and 21st days. The histological results also show that the PCL-CS/neZM group could significantly reduce the parameters of edema, inflammation, and vascularity and increase the parameters of fibrosis, re-epithelialization, and collagen deposition compared to other groups on day 21. CONCLUSION: The results of this study show that the PCL-CS/neZM treatment can effectively improve wound healing.


Assuntos
Quitosana , Óleos Voláteis , Poliésteres , Ratos , Animais , Quitosana/farmacologia , Óleos Voláteis/farmacologia , Derivados da Hipromelose/farmacologia , Cicatrização
2.
J Mech Behav Biomed Mater ; 150: 106240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992582

RESUMO

Hemostatic materials are of great significance for rapid control of bleeding, especially in military trauma and traffic accidents. Chitosan (CS) hemostatic sponges have been widely concerned and studied due to their excellent biocompatibility. However, the hemostatic performance of pure chitosan sponges is poor due to the shortcoming of strong rigidity. In this study, CS and hydroxypropylmethylcellulose (HPMC) were combined to develop a safe and effective hemostatic composite sponges (CS/HPMC) for hemorrhage control by a simple mixed-lyophilization strategy. The CS/HPMC exhibited excellent flexibility (the flexibility was 74% higher than that of pure CS sponges). Due to the high porosity and procoagulant chemical structure of the CS/HPMC, it exhibited rapid hemostatic ability in vitro (BCI was shortened by 50% than that of pure CS sponges). The good biocompatibility of the obtained CS/HPMC was confirmed via cytotoxicity, hemocompatibility and skin irritation tests. The CS/HPMC can induced the erythrocyte and platelets adhesion, resulting in significant coagulation acceleration. The CS/HPMC had excellent performance in vivo assessments with shortest clotting time (40 s) and minimal blood loss (166 mg). All above results proved that the CS/HPMC had great potential to be a safe and rapid hemostatic material.


Assuntos
Quitosana , Hemostáticos , Humanos , Hemostáticos/farmacologia , Hemostáticos/química , Quitosana/farmacologia , Quitosana/química , Derivados da Hipromelose/farmacologia , Hemostasia , Coagulação Sanguínea , Hemorragia
3.
BMC Complement Med Ther ; 22(1): 261, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207726

RESUMO

BACKGROUND: As the largest organ, the skin has been frequently affected by trauma, chemical materials, toxins, bacterial pathogens, and free radicals. Recently, many attempts have been made to develop natural nanogels that, besides hydrating the skin, could also be used as antioxidant or antibacterial agents. METHODS: In this study, the chemical composition of the Mentha spicata essential oil was first investigated using GC-MS analysis. Its nanoemulsion-based nanogel was then investigated; successful loading of the essential oil in the nanogel was confirmed using FTIR analysis. Besides, nanogel's antioxidative, anticancer, and antibacterial activities were investigated. RESULTS: Carvone (37.1%), limonene (28.5%), borneol (3.9%), ß-pinene (3.3%), and pulegone (3.3%) were identified as five major compounds in the essential oil. By adding carboxymethylcellulose (3.5% w/v) to the optimal nanoemulsion containing the essential oil (droplet size of 196 ± 8 nm), it was gelified. The viscosity was fully fitted with a common non-Newtonian viscosity regression, the Carreau-Yasuda model. The antioxidant effect of the nanogel was significantly more potent than the essential oil (P < 0.001) at all examined concentrations (62.5-1000 µg/mL). Furthermore, the potency of the nanogel with an IC50 value of 55.0 µg/mL was substantially more (P < 0.001) than the essential oil (997.4 µg/mL). Also, the growth of Staphylococcus aureus and Escherichia coli after treatment with 1000 µg/mL nanogel was about 50% decreased compared to the control group. Besides, the prepared electrospun polycaprolactone-hydroxypropyl methylcellulose nanofibers mat with no cytotoxic, antioxidant, or antibacterial effects was proposed as lesion dressing after treatment with the nanogel. High potency, natural ingredients, and straightforward preparation are advantages of the prepared nanogel. Therefore, it could be considered for further consideration in vivo studies.


Assuntos
Toxinas Bacterianas , Mentha spicata , Nanofibras , Óleos Voláteis , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Toxinas Bacterianas/farmacologia , Carboximetilcelulose Sódica/farmacologia , Escherichia coli , Radicais Livres/farmacologia , Derivados da Hipromelose/farmacologia , Limoneno/farmacologia , Mentha spicata/química , Testes de Sensibilidade Microbiana , Nanogéis , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Poliésteres , Polietilenoglicóis , Polietilenoimina
4.
Int J Biol Macromol ; 216: 235-250, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35780920

RESUMO

Effective treatment of infected wounds requires a comprehensive wound dressing with a combination of antibacterial, antioxidative, and anti-inflammatory effects. Biodegradable wound dressings incorporating nanostructured material were developed using polyvinyl alcohol with xanthan gum, hypromellose, or sodium carboxymethyl cellulose and extensively evaluated for antibacterial and wound healing efficacy. Synthesized silver nanoparticles and wound dressings displayed λmax at 420 nm with zeta potential ≈ - 35 mV. Significant growth inhibition with >99 % reduction in CFU/ml (p < 0.05) against important wound pathogens including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans were observed. Within 1 h of treatment, hypromellose nanocomposite demonstrated excellent bactericidal effects with a 99.9 % of reduction in growth. In addition, wound dressings demonstrated inhibitory activities against free radical scavengers. Wound dressings demonstrated a significant reduction in the inflammatory response in RAW 264.7 macrophages (p < 0.001). Ex-vivo diffusion demonstrated zero-order release and steady-state flux between 0.1571-0.2295 µg/ml/cm2h with 0.124-0.144 permeability coefficient after 10 h. Usage in animals further confirmed that the hypromellose nanocomposite accelerated the wound healing process with biocompatibility. The results suggested that hybrid biodegradable dressings can be effectively applied to treat infected wounds and attenuate inflammatory responses.


Assuntos
Nanopartículas Metálicas , Infecção dos Ferimentos , Animais , Antibacterianos/farmacologia , Bandagens , Carboximetilcelulose Sódica/farmacologia , Escherichia coli , Derivados da Hipromelose/farmacologia , Polissacarídeos Bacterianos , Álcool de Polivinil/farmacologia , Prata/farmacologia , Sódio/farmacologia , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
5.
Microb Biotechnol ; 15(5): 1422-1433, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34773386

RESUMO

The use of medical devices, such as contact lenses, represents a substantial risk of infection, as they can act as scaffolds for formation of microbial biofilms. Recently, the increasing emergency of antibiotic resistance has prompted the development of novel and effective antimicrobial drugs for biofilm treatment, such as oxidizing agents. The purpose of this study is to investigate the effects of Ozodrop® and Ozodrop® gel, commercial names of ozonated oil in liposomes plus hypromellose, on eradication and de novo formation of biofilms on different supports, such as plastic plates and contact lens. Our results demonstrate that ozonated liposomal sunflower oil plus hypromellose have an excellent inhibitory effect on bacterial viability and on both de novo formation and eradication of biofilms produced on plates and contact lens by Pseudomonas aeruginosa and Staphylococcus aureus. Moreover, we show that Ozodrop® formulations stimulate expression of antimicrobial peptides and that Ozodrop® gel has a strong repair activity on human epithelial cells, suggesting further applications for the treatment of non-healing infected wounds.


Assuntos
Lipossomos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Biofilmes , Humanos , Derivados da Hipromelose/farmacologia , Lipossomos/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus
6.
Viruses ; 13(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34960612

RESUMO

The ongoing coronavirus disease (COVID-19) pandemic has required a variety of non-medical interventions to limit the transmission of the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One such option is over-the-counter nasal sprays that aim to block virus entry and transmission within the nasal cavity. In this study, we assessed the ability of three hydroxypropyl methylcellulose (HPMC)-based powder nasal sprays, produced by Nasaleze, to inhibit SARS-CoV-2 infection and release in vitro. Upon application, the HPMC powder forms a gel-like matrix within the nasal cavity-a process we recapitulated in cell culture. We found that virus release from cells previously infected with SARS-CoV-2 was inhibited by the gel matrix product in a dose-dependent manner, with virus levels reduced by >99.99% over a 72 h period at a dose of 6.4 mg/3.5 cm2. We also show that the pre-treatment of cells with product inhibited SARS-CoV-2 infection, independent of the virus variant. The primary mechanism of action appears to be via the formation of a physical, passive barrier. However, the addition of wild garlic provided additional direct antiviral properties in some formulations. We conclude that HPMC-based nasal sprays may offer an additional component to strategies to limit the spread of respiratory viruses, including SARS-CoV-2.


Assuntos
COVID-19/prevenção & controle , Derivados da Hipromelose/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Sprays Nasais , Células Vero , Internalização do Vírus/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos
7.
J Nanobiotechnology ; 19(1): 385, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809623

RESUMO

Demineralization of hard tooth tissues leads to dental caries, which cause health problems and economic burdens throughout the world. A biomimetic mineralization strategy is expected to reverse early dental caries. Commercially available anti-carious mineralizing products lead to inconclusive clinical results because they cannot continuously replenish the required calcium and phosphate resources. Herein, we prepared a mineralizing film consisting of hydroxypropylmethylcellulose (HPMC) and polyaspartic acid-stabilized amorphous calcium phosphate (PAsp-ACP) nanoparticles. HPMC which contains multiple hydroxyl groups is a film-forming material that can be desiccated to form a dry film. In a moist environment, this film gradually changes into a gel. HPMC was used as the carrier of PAsp-ACP nanoparticles to deliver biomimetic mineralization. Our results indicated that the hydroxyl and methoxyl groups of HPMC could assist the stability of PAsp-ACP nanoparticles and maintain their biomimetic mineralization activity. The results further demonstrated that the bioinspired mineralizing film induced the early mineralization of demineralized dentin after 24 h with increasing mineralization of the whole demineralized dentin (3-4 µm) after 72-96 h. Furthermore, these results were achieved without any cytotoxicity or mucosa irritation. Therefore, this mineralizing film shows promise for use in preventive dentistry due to its efficient mineralization capability.


Assuntos
Materiais Biomiméticos , Fosfatos de Cálcio , Cárie Dentária/metabolismo , Derivados da Hipromelose , Calcificação de Dente/efeitos dos fármacos , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacocinética , Fosfatos de Cálcio/farmacologia , Células Cultivadas , Dentina/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacologia , Masculino , Camundongos , Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas , Coelhos
8.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769429

RESUMO

(1) Background: Artemia salina is a brine shrimp containing high concentrations of dinucleotides, molecules with properties for dry eye treatment. For this reason, the purpose of the study was to evaluate the effect of the artificial tears based on an extract of Artemia salina in a rabbit dry eye model. (2) Methods: A prospective and randomized study was carried out. Twenty rabbits were divided into 4 groups (n = 5, each group): healthy rabbits, dry eye rabbits, dry eye rabbits treated with hypromellose (HPMC), and dry eye rabbits treated with Artemia salina. Dry eye was induced by the topical instillation of 0.2% benzalkonium chloride. The measurements were performed before and after the treatment for 5 consecutive days. (3) Results: The topical instillation of artificial tears containing Artemia salina showed beneficial effects on tear secretion, tear break-up time, corneal staining, the density of Goblet cells, heigh of mucin cloud secreted by these cells, and mRNA levels of IL-1ß and MMP9 in conjunctival cells. Compared with the HPMC, there was a statistically significant improvement (p < 0.05) with the Artemia salina in all the variables under study, except for the conjunctival hyperemia, density of Goblet cells, and mRNA levels of IL-6. (4) Conclusions: The potential of artificial tears based on Artemia salina as a secretagogue agent for dry eye treatment was confirmed, opening the door for future clinical trials and studies to extrapolate the findings for dry eye patients.


Assuntos
Artemia/química , Fosfatos de Dinucleosídeos/farmacologia , Síndromes do Olho Seco/tratamento farmacológico , Derivados da Hipromelose/farmacologia , Lubrificantes Oftálmicos/administração & dosagem , Extratos Vegetais/farmacologia , Lágrimas/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Síndromes do Olho Seco/metabolismo , Masculino , Coelhos , Lágrimas/metabolismo
9.
Carbohydr Polym ; 271: 118447, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364582

RESUMO

Food packaging can extend the shelf life of food products and enhance the safety and quality of the food. This study reports food-grade polyelectrolyte complex films generated via electrostatic interactions between two cellulose-based agents [viz., hypromellose-graft-chitosan, and carmellose sodium]. At optimal conditions, our films show good barrier properties, high transparency, and high efficiency in post-production agent loading. They also demonstrate intrinsic antibacterial effects against both Gram-negative and Gram-positive bacteria. By using frozen chicken breasts as a model, the films enable real-time monitoring of the status of the frozen food due to the property of clusterisation-triggered emission. Along with their negligible toxicity, our films warrant further development as multi-functional films for effective and self-indicating food packaging.


Assuntos
Antibacterianos/farmacologia , Quitosana/farmacologia , Embalagem de Alimentos , Derivados da Hipromelose/farmacologia , Polieletrólitos/farmacologia , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Bactérias/efeitos dos fármacos , Linhagem Celular , Galinhas , Quitosana/química , Quitosana/toxicidade , Conservação de Alimentos/instrumentação , Humanos , Derivados da Hipromelose/química , Derivados da Hipromelose/toxicidade , Camundongos , Óptica e Fotônica , Permeabilidade , Polieletrólitos/química , Polieletrólitos/toxicidade , Aves Domésticas , Vapor , Resistência à Tração
10.
Exp Eye Res ; 211: 108723, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34384756

RESUMO

PURPOSE: To develop an easy-to-perform combined model in human corneal epithelial cells (HCECs) and Balb/c mice macrophages J774.A1 (MP) for preliminary screening of potential ophthalmic therapeutic substances. METHODS: HCECs were exposed to different osmolarities (350-500 mOsm/L) and MTT assay was employed for cell survival and flow cytometry to assess apoptosis-necrosis and relative cell size (RCS) distribution. Effectiveness of Betaine, L-Carnitine, Taurine at different concentrations (ranging from 20 mM to 200 mM) was studied. Also, mucoadhesive polymers such as Hyaluronic acid (HA) and Hydroxypropylmethylcellulose (HPMC) (0.4 and 0.8%) were evaluated. Cells were pre-incubated with the compounds (8h) and then exposed to hyperosmotic stress (470 mOsm/L) for 16h. Moreover, anti-inflammatory activity was performed in LPS-stimulated MP. RESULTS: Exposure to hyperosmotic solutions between 450 and 500 mOsm/L promoted the highest cell death after 16h exposures (p < 0.0001) with a drop in viability to 34.96% ± 11.77 for 470 mOsm/L. Pre-incubation with Betaine at 150 mM and 200 mM provided the highest cell survival against hyperosmolarity (66.01% ± 3.65 and 65.90% ± 0.78 respectively) while HA 0.4% was the most effective polymer in preventing cell death (42.2% ± 3.60). Flow cytometry showed that Betaine and Taurine at concentrations between 150-200 mM and 20-80 mM respectively presented the highest anti-apoptotic activity. Also, HA and HPMC polymers reduced apoptotic-induced cell death. All osmoprotectants modified RCS, and polymers increased their value over 100%. L-Carnitine 50 mM, Taurine 40 mM and HA 0.4% presented the highest TNF-α inhibition activity (60%) albeit all of them showed anti-inflammatory inhibition percentages higher than 20% CONCLUSIONS: HCECs hyperosmolar model combined with inflammatory conditions in macrophages allows the screening of osmoprotectants by simulating chronic hyperosmolarity (16h) and inflammation (24h).


Assuntos
Síndromes do Olho Seco/tratamento farmacológico , Epitélio Corneano/efeitos dos fármacos , Soluções Hipertônicas/farmacologia , Inflamação/fisiopatologia , Macrófagos/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Betaína/farmacologia , Carnitina/farmacologia , Sobrevivência Celular , Células Cultivadas , Síndromes do Olho Seco/fisiopatologia , Epitélio Corneano/metabolismo , Citometria de Fluxo , Humanos , Ácido Hialurônico/farmacologia , Derivados da Hipromelose/farmacologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Concentração Osmolar , Taurina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
11.
J Pharm Pharmacol ; 73(5): 641-652, 2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33772289

RESUMO

OBJECTIVES: The current study was focused on preparing curcumin (CUR) supersaturated self-nano-emulsion (PI-CUR-SNEDDS) using hydrophilic polymer and to study the influence of polymer precipitation inhibitor on the physicochemical and biopharmaceutical properties of the PI-CUR-SNEDDS. METHODS: PI-CUR-SNEDDS were prepared using hydrophilic polymer in order to maintain the supersaturation of CUR in nano-emulsion solution, artificial gastrointestinal fluid (AGF), and the precipitates formed, and characterised by in vitro dispersion tests, in vitro intestinal absorption and in vivo pharmacokinetic and compared with CUR-SNEDDS. KEY FINDINGS: PI-CUR-SNEDDS prepared with 2% hydroxypropyl methylcellulose 55-60 (HPMC55-60) as precipitation inhibitor (PI) significantly improved the viscosity, physical stability and CUR's equilibrium solubility of nanoemulsion. HPMC55-60 and CUR interact in AGF through intermolecular interactions, form hydrogen bonds, and produce amorphous precipitates. Compared with CUR-SNEDDS, the proportion of CUR in the hydrophilic phase increased by about 3-fold, and apparent permeability coefficient (Papp) in duodenum, jejunum, ileum, and colon increased by 2.30, 3.65, 1.54 and 2.08-fold, respectively, and the area under the plasma concentration-time curve0-12h of PI-CUR-SNEDDS also increased by 3.50-fold. CONCLUSIONS: Our results suggested that HPMC55-60 maintained the CUR supersaturation state by forming hydrogen bonds with CUR, increasing the solution's viscosity and drug solubilisation, thus improving the absorption and bioavailability of CUR.


Assuntos
Curcumina/administração & dosagem , Curcumina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Administração Oral , Animais , Disponibilidade Biológica , Liberação Controlada de Fármacos , Emulsões/química , Interações Hidrofóbicas e Hidrofílicas , Derivados da Hipromelose/administração & dosagem , Derivados da Hipromelose/farmacologia , Absorção Intestinal , Tamanho da Partícula , Polímeros/administração & dosagem , Polímeros/farmacologia , Ratos Sprague-Dawley , Solubilidade
12.
J Pharm Pharmacol ; 73(7): 928-936, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33749786

RESUMO

OBJECTIVES: Current treatment for autonomic dysreflexia (AD) involves rupturing a liquid-filled soft capsule of nifedipine to aid rapid drug release and absorption, however, this application is not covered under the manufacturer's license. The objective of the current work was to design a rapidly dissolving solid dosage formulation for the treatment of AD as an alternative to the off-license "bite and swallow" use of currently available commercial products. METHODS: Amorphous solid dispersions (ASDs) of nifedipine were prepared by spray-drying using three different polymers: hydroxypropyl methyl cellulose (HPMC), polyvinyl pyrrolidone (PVP) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus), at a 15% w/w drug loading and were formulated and compressed into tablets. Dissolution testing was performed in the paddle dissolution apparatus using either a monophasic or biphasic medium. KEY FINDINGS: The PVP-nifedipine ASD tablets exhibited rapid dissolution, with 35% of the total nifedipine dose dissolving within 15 min in the monophasic dissolution medium. The HPMC-nifedipine ASD exhibited a very slow dissolution, while the Solupus-nifedipine system exhibited no nifedipine release over 120 min. When tested in the biphasic dissolution medium, the PVP-nifedipine ASD tablets exhibited a release profile comparable to that of the pre-split/ruptured nifedipine soft capsule product. CONCLUSIONS: This study demonstrates that a nifedipine-PVP ASD is a promising formulation strategy in the treatment of AD.


Assuntos
Disreflexia Autonômica/tratamento farmacológico , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Nifedipino/farmacologia , Solubilidade , Bloqueadores dos Canais de Cálcio/farmacologia , Técnicas de Química Sintética/métodos , Excipientes/farmacologia , Humanos , Derivados da Hipromelose/farmacologia , Polietilenoglicóis/farmacologia , Polivinil/farmacologia , Pirrolidinas/farmacologia , Secagem por Atomização
13.
Optom Vis Sci ; 98(2): 159-169, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534380

RESUMO

SIGNIFICANCE: Contact lens (CL) wearing may cause discomfort and eye dryness. We describe here the efficacy of a synthetic polymer in protecting both the corneal epithelial cells and the CL from desiccation damage. Artificial tears containing this polymer might be helpful to treat or prevent ocular surface damage in CL wearers. PURPOSE: We aimed to investigate the protective effects of the synthetic polymer 2-methacryloyloxyethyl phosphorylcholine (poly-MPC) on corneal epithelial cells and CLs subjected to desiccation damage. METHODS: The interaction of poly-MPC with the cell membrane was evaluated on human primary corneal epithelial cells (HCE-F) by the sodium dodecyl sulfate damage protection assay or the displacement of the cell-binding lectin concanavalin A (ConA). Survival in vitro of HCE-F cells and ex vivo of porcine corneas exposed to desiccating conditions after pre-treatment with poly-MPC or hyaluronic acid (HA), hypromellose (HPMC), and trehalose was evaluated by a colorimetric assay. Soft CLs were soaked overnight in a solution of poly-MPC/HPMC and then let dry in ambient air. Contact lens weight, morphology, and transparency were periodically registered until complete dryness. RESULTS: Polymer 2-methacryloyloxyethyl phosphorylcholine and HPMC were retained on the HCE-F cell membrane more than trehalose or HA. Polymer 2-methacryloyloxyethyl phosphorylcholine, HA, and HPMC either alone or in association protected corneal cells from desiccation significantly better than did trehalose alone or in association with HA. Contact lens permeation by poly-MPC/HPMC preserved better their shape and transparency than did saline. CONCLUSIONS: Polymer 2-methacryloyloxyethyl phosphorylcholine coats and protects corneal epithelial cells and CLs from desiccation damage more efficiently compared with trehalose and as good as other reference compounds.


Assuntos
Lentes de Contato Hidrofílicas , Dessecação , Epitélio Corneano/efeitos dos fármacos , Fosforilcolina/análogos & derivados , Ácidos Polimetacrílicos/farmacologia , Falha de Prótese/efeitos dos fármacos , Animais , Células Cultivadas , Síndromes do Olho Seco/tratamento farmacológico , Humanos , Ácido Hialurônico/farmacologia , Derivados da Hipromelose/farmacologia , Fosforilcolina/farmacologia , Dodecilsulfato de Sódio/toxicidade , Suínos , Trealose/farmacologia
14.
Food Chem ; 346: 128925, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418416

RESUMO

Mango is a tropical fruit presenting intense postharvest metabolism. In storage at room temperature, it presents a short shelf life due to the high respiratory rate, and consequent ripening, which limits the marketing period in distant regions. This study evaluated the effect of edible coatings of hydroxypropyl methylcellulose and beeswax in concentrations of 10, 20, and 40% in 'Palmer' mangoes stored for 15 days at 21 °C. The coatings controlled ripening, maintaining peel and pulp colors, firmness, soluble solids (SS), titratable acidity (TA), SS/TA ratio, sugars, ascorbic acid, phenolic compounds, flavonoids, ß-carotene, and antioxidant activity. Also, they reduced weight loss, oxidative stress, and the anthracnose (Colletotrichum gloeosporioides) incidence, without inducing alcohol dehydrogenase activity, which suggests that coated fruit did not ferment. Treatment with 20% beeswax was the most suitable for industrial applications, increasing in six days the mangoes shelf life.


Assuntos
Filmes Comestíveis , Conservação de Alimentos/métodos , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacologia , Mangifera/química , Ceras/química , Colletotrichum/efeitos dos fármacos , Cor , Frutas/química , Frutas/efeitos dos fármacos , Mangifera/microbiologia
15.
Int J Biol Macromol ; 172: 515-523, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33476614

RESUMO

A pH-sensitive food packaging film was prepared based on konjac glucomannan (KGM) and hydroxypropyl methyl cellulose (HPMC) incorporated with mulberry extracts2 (MBE). FT-IR and XRD analysis revealed that there are good molecular interactions among the three components. The incorporation of MBE into KGM and HPMC (KH) films can significantly improve the mechanical properties and UV resistance. Notably, the KH-MBE-20% film almost completely blocked UV light in the range of 200-600 nm. The best antioxidant and antibacterial properties were obtained when the addition of MBE in the composite film was 20%. In addition, KH-MBE film has good responsiveness to buffers with pH range from 2 to 12. In visual monitoring experiments using the film on fresh fish, the color of the KH-MBE film changed from purple to gray to yellow as the freshness of the fish decreased, and the KH-MBE-20% film had the best color stability. Therefore, intelligent packaging of KH-MBE film has potential applications in real-time monitoring of fish freshness.


Assuntos
Antibacterianos/química , Antioxidantes/química , Derivados da Hipromelose/química , Mananas/química , Morus/química , Protetores Solares/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Produtos Pesqueiros/análise , Embalagem de Alimentos/métodos , Frutas/química , Humanos , Concentração de Íons de Hidrogênio , Derivados da Hipromelose/farmacologia , Mananas/farmacologia , Membranas Artificiais , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Protetores Solares/farmacologia , Raios Ultravioleta
16.
Drug Dev Ind Pharm ; 46(1): 146-158, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31894720

RESUMO

The aim of this research was to assess the effect of polymer blend and effervescent components on the floating and swelling behaviors of swellable gastro-floating formulation as well as the drug release through a compartmental modeling analysis. Swellable gastro-floating formulation of freely water-soluble drug, metformin HCl as a drug model, was formulated and developed using D-optimal design. Polymer combination between interpolymer complex (IPC) (poly-vinyl acetate-copolymer methacrylate) and hydroxy propyl methyl cellulose (HPMC), and effervescent components were studied and optimized in this work. Several factors affecting the drug release behavior were determined e.g. swelling behavior, erosion behavior, and floating behavior were studied as well as the drug release through compartmental modeling analysis. The results revealed that the hydrophilic polymer was responsible for gas entrapment formed from effervescent reaction, meanwhile IPC contributed on maintaining the swollen matrix integrity through intermolecular polymer interaction. In addition, effervescent components played fundamental role in the formation of porous system as well as inducing burst release effect. Compartmental modeling provided different outlook about the drug release. Presence of IPC at a high proportion (10-15%) of the polymer blend modulated the changes of pattern of the drug release kinetics and mechanism. Finally, compartmental modeling-based approach was more adequate to describe the drug release kinetics and mechanism compared to the monophasic equation model correlating with process understanding of the drug release from swellable gastro-floating formulation.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Metacrilatos/química , Polímeros/química , Estômago/fisiologia , Administração Oral , Liberação Controlada de Fármacos , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacologia , Cinética , Metacrilatos/farmacologia , Comprimidos
17.
Acta Biomater ; 102: 259-272, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31811957

RESUMO

Islet transplantation is one of the most efficient cell therapies used in clinics and could treat a large proportion of patients with diabetes. However, it is limited by the high requirement of pancreas necessary to provide the sufficient surviving islet mass in the hepatic tissue and restore normoglycaemia. Reduction in organ procurement requirements could be achieved by extrahepatic transplantation using a biomaterial that enhances islet survival and function. We report a plasma-supplemented hydroxypropyl methylcellulose (HPMC) hydrogel, engineered specifically using a newly developed technique for intra-omental islet infusion, known as hOMING (h-Omental Matrix Islet filliNG). The HPMC hydrogel delivered islets with better performance than that of the classical intrahepatic infusion. After the validation of the HPMC suitability for islets in vivo and in vitro, plasma supplementation modified the rheological properties of HPMC without affecting its applicability with hOMING. The biomaterial association was proven to be more efficient both in vitro and in vivo, with better islet viability and function than that of the current clinical intrahepatic delivery technique. Indeed, when the islet mass was decreased by 25% or 35%, glycaemia control was observed in the group of plasma-supplemented hydrogels, whereas no regulation was observed in the hepatic group. Plasma gelation, observed immediately post infusion, decreased anoïkis and promoted vascularisation. To conclude, the threshold mass for islet transplantation could be decreased using HPMC-Plasma combined with the hOMING technique. The simplicity of the hOMING technique and the already validated use of its components could facilitate its transfer to clinics. STATEMENT OF SIGNIFICANCE: One of the major limitations for the broad deployment of current cell therapy for brittle type 1 diabetes is the islets' destruction during the transplantation process. Retrieved from their natural environment, the islets are grafted into a foreign tissue, which triggers massive cell loss. It is mandatory to provide the islets with an 3D environment specifically designed for promoting isletimplantation to improve cell therapy outcomes. For this aim, we combined HPMC and plasma. HPMC provides suitable rheological properties to the plasma to be injectable and be maintained in the omentum. Afterwards, the plasma polymerises around the graft in vivo, thereby allowing their optimal integration into their transplantation site. As a result, the islet mass required to obtain glycaemic control was reduced by 35%.


Assuntos
Diabetes Mellitus Experimental/cirurgia , Excipientes/farmacologia , Controle Glicêmico/métodos , Hidrogéis/farmacologia , Derivados da Hipromelose/farmacologia , Transplante das Ilhotas Pancreáticas , Animais , Difusão , Excipientes/química , Hidrogéis/química , Derivados da Hipromelose/química , Ilhotas Pancreáticas/citologia , Masculino , Omento/cirurgia , Oxigênio/química , Oxigênio/metabolismo , Ratos Endogâmicos Lew , Ratos Wistar , Viscosidade
18.
Int J Biol Macromol ; 152: 1002-1009, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751695

RESUMO

Hydroxypropyl methylcellulose (HPMC)/sodium citrate (SC)/lipid tea polyphenol (LTP) photophobic films with different pore sizes from micron scale to nanometer scale were prepared by regulating the SC content (1-7%). The microstructures, physical and sustained antioxidant properties of these films were studied by using wide angel X-ray diffraction, small angle X-ray scattering (SAXS), scanning electron microscope, whiteness meter, ultraviolet spectrophotometer, texture analyzer and peroxide value test. Composite films with higher SC content showed larger pore size and whiteness. With the increasing SC content, crystallinity first increased then decreased. The addition of SC decreased the Ds (surface fractal dimension) value, smoothness of the cross-section structure, tensile strength, elongation and modulus of composite films. HPMC/SC/LTP microporous films possessed control-release property in oil system, reflected by the lowest peroxide value of peanut oil enclosed in film with 3% SC during three weeks, meaning this film showed the best sustained antioxidant property.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacologia , Luz , Fenômenos Mecânicos , Porosidade
19.
ACS Appl Mater Interfaces ; 11(32): 28740-28751, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31334627

RESUMO

Electrospinning provides a simple and convenient method to fabricate nanofibrous meshes. However, the nanofiber productivity is often limited to the laboratory scale, which cannot satisfy the requirements of practical application. In this study, we developed a novel needleless electrospinning spinneret based on a double-ring slit to fabricate drug-loaded nanofibrous meshes. In contrast to the conventional single-needle electrospinning spinneret, our needless spinneret can significantly improve nanofiber productivity due to the simultaneous formation of multiple jets during electrospinning. Curcumin-loaded poly(l-lactic acid) (PLLA) nanofiber meshes with various concentrations and on the large scale were manufactured by employing our developed needleless spinneret-based electrospinning device. We systematically investigated the drug release behaviors, antioxidant properties, anti-inflammatory attributes, and cytotoxicity of the curcumin-loaded PLLA nanofibrous meshes. Furthermore, a bilayer nanofibrous composite mesh was successfully generated by electrospinning curcumin-loaded PLLA solution and diclofenac sodium loaded poly(ethylene oxide) solution in a predetermined time sequence, which revealed potent antibacterial properties. Subsequently, novel mucoadhesive patches were assembled by combining the bilayer composite nanofibrous meshes with (hydroxypropyl)methyl cellulose based mucoadhesive film. The multilayered mucoadhesive patch has excellent adhesion properties on the porcine buccal mucosa. Overall, our double-ring slit spinneret can provide a novel method to rapidly produce large-scale drug-loaded nanofibrous meshes to fabricate mucoadhesive patches. The multiple-layered mucoadhesive patches enable the incorporation of multiple drugs with different targets of action, such as analgesic, anti-inflammatory, and antimicrobial compounds, for mouth ulcer or other oral disease treatments.


Assuntos
Adesivos , Curcumina , Derivados da Hipromelose , Nanofibras/química , Úlceras Orais/terapia , Adesivos/química , Adesivos/farmacologia , Animais , Curcumina/química , Curcumina/farmacologia , Humanos , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacologia , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Úlceras Orais/metabolismo , Úlceras Orais/patologia , Suínos
20.
Int J Antimicrob Agents ; 54(5): 610-618, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31356860

RESUMO

Skin bacterial colonization/infection is a frequent cause of morbidity in patients with chronic wounds and allergic/inflammatory skin diseases. This study aimed to develop a novel approach to eradicate meticillin-resistant Staphylococcus aureus (MRSA) from human skin. To achieve this, the stability and antibacterial activity of the novel LL-37-derived peptide P10 in four ointments was compared. Results indicate that P10 is chemically stable and antibacterial in hypromellose gel and Softisan-containing cream, but not in Cetomacrogol cream (with or without Vaseline), at 4 °C for 16 months. Reduction in MRSA counts on Leiden human epidermal models (LEMs) by P10 in hypromellose gel was greater than that of the peptide in Cetomacrogol cream or phosphate buffered saline. P10 did not show adverse effects on LEMs irrespective of the ointment used, while Cetomacrogol with Vaseline and Softisan cream, but not hypromellose gel or Cetomacrogol cream, destroyed MRSA-colonized LEMs. Taking all this into account, P10 in hypromellose gel dose-dependently reduced MRSA colonizing the stratum corneum of the epidermis as well as biofilms of this bacterial strain on LEMs. Moreover, P10 dose-dependently reduced MRSA counts on ex-vivo human skin, with P10 in hypromellose gel being more effective than P10 in Cetomacrogol and Softisan creams. P10 in hypromellose gel is a strong candidate for eradication of MRSA from human skin.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pomadas/farmacologia , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Administração Tópica , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cetomacrogol/farmacologia , Portadores de Fármacos/farmacologia , Humanos , Derivados da Hipromelose/farmacologia , Lipídeos/farmacologia , Testes de Sensibilidade Microbiana , Vaselina/farmacologia , Pele/microbiologia , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...